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In the study of pattern formation in symmetric physical systems, a three-

dimensional structure in thin domains is often modelled as a two-dimensional

one. This paper is concerned with functions in R3 that are invariant under the

action of a crystallographic group and the symmetries of their projections into a

function defined on a plane. A list is obtained of the crystallographic groups for

which the projected functions have a hexagonal lattice of periods. The proof is

constructive and the result may be used in the study of observed patterns in thin

domains, whose symmetries are not expected in two-dimensional models, like

the black-eye pattern.

1. Introduction

This article is aimed at two sets of readers: crystallographers

and bifurcation theorists. What is obvious to one set of readers

is not necessarily so to the other. Concepts are also subject to

alternative, substantially different, statements. We try to

provide a bridge between the two viewpoints, conditioned by

our background in bifurcations.

In the study of crystals and quasicrystals, projection is a

mathematical tool for lowering dimension (Senechal, 1996;

Koca et al., 2014). A well developed study in crystallographic

groups, their subgroups and the notion of projection used in

crystallography can be found in the International Tables for

Crystallography (ITC) Volume A (Hahn, 2005) and ITC

Volume E (Kopsky & Litvin, 2002). Tables therein provide

information on projections of elements of crystallographic

groups.

However, we intend to use crystallographic groups for a

different purpose. The symmetries of solutions of partial

differential equations, under certain boundary conditions,

form a crystallographic group – see, for instance, Golubitsky &

Stewart (2002, ch. 5). The set of all level curves of these

functions is interpreted as a pattern. In order to study three-

dimensional patterns observed in a two-dimensional envir-

onment, we use the projection of symmetric functions as

defined in x2. The symmetry group of the projected functions

does not necessarily coincide with that of projections used in

crystallography. The information contained in the ITC (Hahn,

2005; Kopsky & Litvin, 2002) has to be organized in a different

way before it can be used for this purpose, and this is the

object of the present article.

Regular patterns are usually seen directly in nature and

experiments. Convection, reaction–diffusion systems and the

Faraday waves experiment comprise three commonly studied

pattern-forming systems (see, for instance, Busse, 1978;

Turing, 1952; Crawford et al., 1993).

Equivariant bifurcation theory has been used extensively to

study pattern formation via symmetry-breaking steady-state
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bifurcation in various physical systems modelled by EðnÞ-

equivariant partial differential equations. In Golubitsky &

Stewart (2002, ch. 5) there is a complete description of this

method used, for example, in Dionne & Golubitsky (1992),

Dionne (1993), Bosch Vivancos et al. (1995), Callahan &

Knobloch (1997) and Dionne et al. (1997), where the spatially

periodic patterns are sometimes called planforms.

The pattern itself and its observed state can occur in

different dimensions. This happens for instance when an

experiment is done in a three-dimensional medium but the

patterns are only observed on a surface, a two-dimensional

object. This is the case for reaction–diffusion systems in the

Turing instability regime (Turing, 1952), which have often

been described using a two-dimensional representation

(Ouyang & Swinney, 1995). The interpretation of this two-

dimensional outcome is subject to discussion: the black-eye

pattern observed by Ouyang & Swinney (1995) has been

explained both as a mode interaction (Gunaratne et al., 1994)

and as a suitable projection of a three-dimensional into a two-

dimensional lattice (Gomes, 1999). In her article, Gomes

shows how a two-dimensional hexagonal pattern can be

produced by a specific projection of a body-centred cubic

(b.c.c.) lattice.

Pinho & Labouriau (2014) study projections in order to

understand how these affect symmetry. Their necessary and

sufficient conditions for identifying projected symmetries are

used extensively in our results.

Motivated by the explanation of Gomes (1999), we look for

all three-dimensional lattices that exhibit a hexagonal

projected lattice. We illustrate our results using the primitive

cubic lattice.

2. Projected symmetries

The study of projections is related to patterns. Patterns are

level curves of functions f : Rnþ1
! R. In our work we

suppose that these functions are invariant under the action of

a particular subgroup of the Euclidean group: a crystal-

lographic group.

The Euclidean group, Eðnþ 1Þ, is the group of all isometries

on Rnþ1, also described by the semi-direct sum

Eðnþ 1Þ ffi Rnþ1 _þþOðnþ 1Þ, with elements given as an

ordered pair ðv; �Þ, in which v 2 Rnþ1 and � is an element of

the orthogonal group Oðnþ 1Þ of dimension nþ 1.

Let � be a subgroup of Eðnþ 1Þ. The homomorphism

’ : � ! Oðnþ 1Þ

ðv; �Þ 7! �

has as image a group J, called the point group of �, and its

kernel forms the translation subgroup of �.

We say that the translation subgroup of � is an (n + 1)-

dimensional lattice, L, if it is generated over the integers by

nþ 1 linearly independent elements l1; . . . ; lnþ1 2 R
nþ1, which

we write as

L ¼ hl1; . . . ; lnþ1iZ:

A crystallographic group is a subgroup of Eðnþ 1Þ, such

that its translation subgroup is an ðnþ 1Þ-dimensional lattice.

A description of these concepts can be found in the ITC

Volume A (Hahn, 2005, ch. 8.1, pp. 720–725) and in the

suggested bibliography for the chapter; see also Miller (1972).

To get symmetries of objects in Rnþ1, consider the group

action of Eðnþ 1Þ on Rnþ1 given by the function:

Eðnþ 1Þ � Rnþ1
! Rnþ1

ððv; �Þ; ðx; yÞÞ 7! ðv; �Þ � ðx; yÞ ¼ vþ �ðx; yÞ:
ð1Þ

In Armstrong (1988), the reader can see that the action (1)

restricted to a point group of a crystallographic group leaves

its translation subgroup L invariant. The largest subgroup of

Oðnþ 1Þ that leaves L invariant forms the holohedry of L and

is denoted by HL. The holohedry is always a finite group (see

Senechal, 1996, x2.4.2). Note that the term holohedry used

here, as well as in Dionne & Golubitsky (1992) and Golubitsky

& Stewart (2002), corresponds in Hahn (2005, ch. 8.2) to the

definition of point symmetry of the lattice.

Crystallographic groups are related to symmetries of

pattern formation by the action of the group of symmetries on

a space of functions (Golubitsky & Stewart, 2002, ch. 5).

To see this, observe that equation (1) induces an action of a

crystallographic group � on the space of functions

f : Rnþ1
! R by

ð� � f Þðx; yÞ ¼ f ð��1ðx; yÞÞ for � 2 � and ðx; yÞ 2 Rnþ1:

Thus, we can construct a space X� of �-invariant functions,

that is

X� ¼ ff : Rnþ1
! R; � � f ¼ f ; 8� 2 �g:

In particular a �-invariant function is L invariant.

An L-symmetric pattern or L-crystal pattern consists of the

set of all level curves of a function f : Rnþ1
! R with periods

in the lattice L.

In Gomes (1999) the black-eye pattern is obtained as a

projection of a function, whose level sets form a b.c.c. pattern

in R3. In terms of symmetries, the black-eye is a hexagonal

pattern, as we can see in Gomes (1999); it is the level sets of a

bi-dimensional function with periods in a hexagonal plane

lattice, that is, a lattice that admits as its holohedry a group

isomorphic to the dihedral group of symmetries of the regular

hexagon, D6. Moreover, we expect the point group of

symmetries of the black-eye to be isomorphic to D6.

For y0 > 0, consider the restriction of f 2 X� to the region

between the hyperplanes y ¼ 0 and y ¼ y0. The projection

operator �y0
integrates this restriction of f along the width y0,

yielding a new function with domain Rn.

Definition 1. For f 2 X� and y0 > 0, the projection operator

�y0
is given by

�y0
ðf ÞðxÞ ¼

R y0

0 f ðx; yÞ dy:

The region between y ¼ 0 and y ¼ y0 is called the projec-

tion band and �y0
ðf Þ : Rn

! R is the projected function.
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The functions �y0
ðf Þ may be invariant under the action of

some elements of the group EðnÞ ffi Rn _þþOðnÞ. The relation

between the symmetries of f and those of �y0
ðf Þ was provided

by Pinho & Labouriau (2014).

To find the group of symmetries of the projected functions

�y0
ðX�Þ, the authors consider the following data:

(a) For � 2 OðnÞ, the elements of Oðnþ 1Þ:

� :¼
In 0

0 �1

� �
; �þ :¼

� 0

0 1

� �
and �� :¼ ��þ:

(b) The subgroup b�� of �, whose elements are of the form

ðv; yÞ; ��ð Þ; � 2 OðnÞ; ðv; yÞ 2 Rn
� R;

the translation subgroup of b�� and � are the same, while the

point group of b�� consists of those elements of � that fix the

space fðv; 0Þ 2 Rn
g.

For the three-dimensional case b�� coincides with the scan-

ning group defined in Kopsky & Litvin (2002, ch. 5.2).

(c) The projection h : b��! EðnÞ ffi Rn _þþOðnÞ given by

h ðv; yÞ; ��ð Þ ¼ ðv; �Þ:

The group of symmetries of �y0
ðX�Þ is the image by the

projection h of the group �y0
defined as: (i) if ð0; y0Þ 2 L then

�y0
¼ b��; (ii) if ð0; y0Þ =2L then �y0

contains only those

elements of b�� that are either side preserving ððv; 0Þ; �þÞ or

side reversing ððv; y0Þ; ��Þ.
The group b�� consists of those elements of � that will

contribute to the symmetries of the set of projected functions.

Depending on whether the hypotheses above hold, the group

�y0
will be either the whole groupb�� or a subperiodic group ofb��, that is a subgroup whose lattice of translations has lower

dimension than the space on which the group acts; see Hahn

(2005, ch. 8.1) and Kopsky & Litvin (2002, ch. 1.2).

The group �y0
depends on how the elements of � are

transformed by the projection �y0
of �-invariant functions.

The criterion that clarifies the connection between the

symmetries of X� and �y0
ðX�Þ is provided by the following

result.

Theorem 1. [Theorem 1.2 in Pinho & Labouriau (2014)] All

functions in �y0
ðX�Þ are invariant under the action of

ðv; �Þ 2 EðnÞ if and only if one of the following conditions

holds:

(i) ððv; 0Þ; �þÞ 2 �;

(ii) ððv; y0Þ; ��Þ 2 �;

(iii) ð0; y0Þ 2 L and either ððv; y1Þ; �þÞ 2 � or ððv; y1Þ; ��Þ 2
�, for some y1 2 R.

3. Hexagonal projected symmetries

As we saw in the last section, there is a connection between a

crystallographic group � in dimension nþ 1 and the group of

symmetries of the set of projected functions �y0
ðX�Þ. In this

work we aim to determine which crystallographic groups in

dimension 3 can yield hexagonal symmetries after projection.

In other words, we want to describe how to obtain hexagonal

plane patterns by projection.

Given a crystallographic group �, with an ðnþ 1Þ-dimen-

sional lattice L, whose holohedry is HL , we denote by �y0
ðLÞ

the translation subgroup of the crystallographic group �y0
ð�Þ

of symmetries of �y0
ðX�Þ, whose point group is a subset of the

holohedry of �y0
ðLÞ. From theorem 1 we obtain:

Corollary 1. Let e�� be a crystallographic group with latticeeLL � Rn. Suppose eLL ¼ �y0
ðLÞ, and let HeLL and HL be the

holohedries of eLL and L � Rnþ1, respectively. If � 2 HeLL lies in

the point group of e�� then either �þ 2 HL or �� 2 HL.

Proof. Since � 2 HeLL implies � lies in the point group ofe��, then there exists v 2 Rn such that f is ðv; �Þ invariant for

all f 2 �y0
ðX�Þ. Hence, one of the three conditions of

theorem 1 holds. Then, depending on whether (i), (ii) or (iii)

is verified, either ðw; �þÞ or ðw; ��Þ is in � where w 2

fðv; 0Þ; ðv; y0Þ; ðv; y1Þg. By the definition of holohedry, we have

either �þ 2 HL or �� 2 HL. &

Remark 1. We note that there is a non-trivial relation

between the latticeeLL of periods of the projected functions and

that of the original one. In fact, consider an ðnþ 1Þ-dimen-

sional lattice L and eLL ¼ �y0
ðLÞ. If v 2 eLL then ðv; InÞ is a

symmetry of �y0
ðX�Þ. Applying theorem 1 with � ¼ In, one of

the following holds for each v 2 eLL:

(i) ððv; 0Þ; �þÞ ¼ ððv; 0Þ; Inþ1Þ 2 �, or equivalently

ðv; 0Þ 2 L;

(ii) ððv; y0Þ; ��Þ ¼ ððv; y0Þ; �Þ 2 � then ððv; y0Þ; �Þ
2
2 �,

implying that ð2v; 0Þ 2 L;

(iii) ð0; y0Þ 2 L and either ðv; y1Þ or ð2v; 0Þ is in L, for some

y1 2 R.

While condition (i) implies that L \ fðx; 0Þ 2 Rnþ1
g 	 eLL,

the other conditions show that this inclusion is often strict.

Furthermore, conditions (ii) and (iii) show that we may have

no element of the form ðv; y1Þ in L and yet v 2 eLL. This is due

to a possible non-zero translation vector associated with � 2 J.

As a converse to corollary 1 we have:

Corollary 2. Let � be a crystallographic group with an

ðnþ 1Þ-dimensional lattice L and let ~LL ¼ �y0
ðLÞ, with HeLL

and HL the holohedries of eLL � Rn and of L � Rnþ1, respec-

tively. Suppose either �þ or �� is in HL. If one of the following

conditions holds

(i) � =2HL;

(ii) either ð0; �þÞ or ð0; ��Þ is in �; then, for any y0 2 R,

� 2 HeLL.

Proof. Consider v 2 eLL and suppose condition (i) holds. By

theorem 1, either ðv; 0Þ 2 L or ð0; y0Þ and ðv; y1Þ 2 L.

If ðv; 0Þ 2 L then ð�v; 0Þ 2 L. Otherwise, ð0; y0Þ and

ð�v; y2Þ 2 L for y2 2 f�y1; y1g. Applying theorem 1 we have

�v 2 eLL in both cases. Therefore, � is a symmetry of eLL.

Suppose now that condition (ii) holds. If ð0; �þÞ 2 � then

ð0; �Þ belongs toe��, for all y0 2 R, by condition (i) of theorem

1. The other possibility is that ð0; ��Þ 2 �. If for v 2 eLL either
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condition (i) or condition (iii) of theorem 1 holds, the proof

follows as in the case of condition (i). Suppose then that

ððv; y0Þ; �Þ 2 �, then ððv; y0Þ; �Þ � ð0; ��Þ ¼ ððv; y0Þ; �þÞ 2 �.

Therefore, ðv; �Þ 2 e��, by theorem 1, completing the proof. &

The analysis in Kopsky & Litvin (2002, ch. 5.1) aims to find

sectional layer groups and penetration rod groups, subgroups

of the crystallographic group that leave a crystallographic

plane, defined by three lattice points, and a crystallographic

straight line invariant, respectively, by a method of scanning a

given crystallographic group.

When a pattern is projected, it is not apparent that the plane

of projection is crystallographic, as it may not contain three

lattice points.

We say that a lattice L1 is rationally compatible with a lattice

L2 if there exists r 2 Z n f0g such that rL1 � L2. A vector

v 2 Rk is rational with respect to a lattice L � Rk if hv; ‘i 2 Q
for all ‘ 2 L, where h�; �i is the usual inner product in Rk.

Given a lattice eLL � Rk, we define its suspension eLLs � R
kþ1 aseLLs ¼ fðv; 0Þ; v 2 eLLg.

The next proposition provides conditions for a suspension

of the projected lattice to be rationally compatible with the

original lattice.

Proposition 1. Consider a crystallographic group � with a

lattice L � Rnþ1 and let eLL ¼ �y0
ðLÞ � Rn be the translation

subgroup of �y0
ð�Þ and denote its suspension by eLLs � R

nþ1.

If ð0; y0Þ 62 L, then eLLs is always rationally compatible with

L.

If ð0; y0Þ 2 L, then eLLs is rationally compatible with L if and

only if the normal vector ð0; y0Þ to the projection hyperplane is

rational with respect to L.

Note that, if ð0; y0Þ 2 L, we are projecting the values of

functions on a band of the width of one (or more) cells along a

crystallographic direction. Otherwise the projected group is

smaller. So, we must use different results in the ITC according

to the case.

Proof. If ð0; y0Þ 62 L, then only conditions (i) or (ii) of

remark 1 are applicable. Therefore, if v 2 eLL then ð2v; 0Þ 2 L.

Hence, eLL is rationally compatible with L.

If ð0; y0Þ 2 L, then, using remark 1, it follows that v 2 eLL for

all v such that ðv; y1Þ 2 L for some y1 2 R.

Suppose first that eLLs is rationally compatible with L and let

ðv; y1Þ 2 L. Then rðv; 0Þ 2 L and hence ð0; ry1Þ 2 L for some

r 2 Z. It follows that y1 ¼ ðp=qÞy0 for some p; q non-zero

integers. Therefore ð0; y0Þ is rational with respect to L.

Now suppose ð0; y0Þ is rational with respect to L. We claim

that for eacheljlj one of the following conditions holds:

(i) ððeljlj; 0Þ; Inþ1Þ 2 �;

(ii) ððeljlj; y1Þ; �Þ 2 �, for some y1 2 R;

(iii) ð0; y0Þ and ðeljlj; ðp=qÞy0Þ 2 L, for some p; q non-zero

integers.

Condition (iii) is a stronger version of condition (iii) in

remark 1. The other conditions follow from remark 1. Any

generatoreljlj of eLL such that ðeljlj; yÞ 2 L must satisfy either (i) or

(iii) above, because ð0; y0Þ is rational with respect to L. Any

other generator of eLL must satisfy (ii), proving our claim.

Conversely, if one of the conditions (i) or (ii) is true, then

ð2v; 0Þ 2 L, using remark 1. If condition (iii) holds for some

j 2 f1; . . . ; ng, then ð0; y0Þ; ðeljlj; ðpj=qjÞy0Þ 2 L, where pj; qj are

non-zero integers. Since L is a lattice ðqj
eljlj; 0Þ 2 L. ThereforeeLLs is rationally compatible with L. &

As an illustration, take � ¼ L ¼ hð0; 1Þ; ð21=2; 1=2ÞiZ, for

which eLLs ¼ hð2
1=2; 0ÞiZ is always rationally compatible with L,

independently of y0. Another example is given by

� ¼ L ¼ hð0; 1Þ; ð1; 21=2ÞiZ. For y0 ¼ 1 we have thateLLs ¼ hð1; 0ÞiZ is not rationally compatible with L, whereas for

y0 =2Z, we get eLLs ¼ fð0; 0Þg.

For three-dimensional lattices, and if the generators of eLL
are related by an orthogonal transformation, then we can

remove the condition on ð0; y0Þ from the statement of

proposition 1, at the price of having some more complicated

conditions. This provides an alternative means of obtaining

rational compatibility.

Our starting point is a specific two-dimensional lattice ~LL
and we want to characterize the three-dimensional lattices L

that project onto this. The first step is to establish that L must

have a non-trivial intersection with the plane X0Y =

fðx; y; 0Þ; x; y 2 Rg.

Theorem 2. Let � be a crystallographic group with a lattice

L � R3 such that its projectione�� ¼ �y0
ð�Þ has a plane latticeeLL ¼ �y0

ðLÞ generated by two linearly independent vectors el1l1

and el2l2 ¼ �el1l1 for � in the point group,eJJ, of e��.

Then the suspension eLLs � R
3 is rationally compatible with

L if for each v 2 fel1l1;el2l2g one of the following conditions holds:

(i) ððv; 0Þ; I3Þ 2 �;

(ii) ððv; y1Þ; �Þ 2 �, for some y1 2 R;

(iii) ðv; y1Þ 2 L, for some y1 2 R.

That the conditions are also necessary is apparent from

remark 1. Note that the statement of theorem 2 excludes

oblique and primitive rectangular lattices.

Proof. Since el2l2 ¼ �el1l1, it is sufficient to show that one of

rðel1l1; 0Þ or rðel2l2; 0Þ is in L. To see this, suppose, without loss of

generality, that rðel1l1; 0Þ 2 L. Then since � 2eJJ, by corollary 1,

either �þ 2 HL or �� 2 HL. As �þðrel1l1; 0Þ ¼ ��ðrel1l1; 0Þ ¼

ðrel2l2; 0Þ, it implies that rðel2l2; 0Þ 2 L and therefore L has a

sublattice Lr.

If for some v 2 fel1l1;el2l2g one of the conditions (i) or (ii) is true

then, by remark 1, ðrv; 0Þ 2 L, for r ¼ 1 or r ¼ 2. Hence, all

that remains to prove is the case when el1l1 and el2l2 only satisfy

condition (iii).

By hypothesis,

ðel1l1; y1Þ and ðel2l2; y2Þ are inL; for some y1; y2 2 R: ð2Þ

This implies that

ðel1l1 þ
el2l2; y1 þ y2Þ 2 L: ð3Þ

Using (2) and corollary 1 either
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�þðel1l1; y1Þ ¼ ð
el2l2; y1Þ 2 L

or

��ðel1l1; y1Þ ¼ ð
el2l2;�y1Þ 2 L:

If ðel2l2; y1Þ 2 L then

ðel2l2; y1Þ þ ð
el2l2; y2Þ ¼ ð2el2l2; y1 þ y2Þ 2 L:

Thus, using (3)

ðel1l1 þ
el2l2; y1 þ y2Þ � ð2el2l2; y1 þ y2Þ ¼ ð

el1l1 �
el2l2; 0Þ 2 L:

Since fel1l1;el2l2g is a basis to eLL and � 2eJJ then

�ðel1l1 �
el2l2Þ ¼ mel1l1 þ nel2l2;m; n 2 Z

where m; n are not both equal to zero. Suppose that n 6¼ 0,

then

nðel1l1 �
el2l2; 0Þ; ðmel1l1 þ nel2l2; 0Þ 2 L ð4Þ

implying that the sum of these last two vectors

ððnþmÞel1l1; 0Þ 2 L. Therefore, if n 6¼ �m, Lr is a sublattice of

L, where r ¼ mþ n 2 Z. If n ¼ �m, we subtract the two

expressions in (4) to get ð2nel1l1; 0Þ 2 L.

If ðel2l2;�y1Þ 2 L then

�ðel2l2;�y1Þ þ ð
el2l2; y2Þ ¼ ð0; y1 þ y2Þ 2 L:

Thus, using (3),

ðel1l1 þ
el2l2; y1 þ y2Þ � ð0; y1 þ y2Þ ¼ ð

el1l1 þ
el2l2; 0Þ 2 L:

An analogous argument applied to �ðel1l1 þ
el2l2; 0Þ finishes the

proof. &

Let L � R3 be a lattice and P � R3 be a plane such that

P \ L 6¼ ;. Given v 2 P \ L there is a rotation � 2 Oð3Þ such

that �ðP� vÞ is the plane X0Y ¼ fðx; y; 0Þ; x; y 2 Rg. Then we

define the y0-projection of L into P as the lattice

��1ðeLLÞ � Eð2Þ whereeLL is the symmetry group of �y0
ðX �ðL�vÞÞ.

We say that the y0-projection of L into the plane P is a

hexagonal plane lattice if and only if the lattice eLL admits as its

holohedry a group isomorphic to D6.

Our main result is the following theorem. Note that the

hypothesis of having a threefold rotation is not restrictive

when one is looking for projections yielding a pattern with D6

symmetry.

Theorem 3. Let L � R3 be a lattice of a crystallographic

group �. Suppose for some y
 the group �y

ð�Þ contains a

threefold rotation. Then, for any y0, the y0-projection of L into

the plane P is a hexagonal plane lattice if and only if: (i) P \ L

contains at least two elements; (ii) there exists � 2 HL such

that: � is a threefold rotation; P is � invariant.

Proof. Suppose first that ð0; 0; 0Þ 2 P \ L. To show that

conditions (i) and (ii) are necessary let us consider, without

loss of generality, that P ¼ X0Y . Therefore, the conditions

hold by theorem 2.

To prove that conditions (i) and (ii) are sufficient, consider

the threefold rotation � 2 HL. By Miller (1972), theorem 2.1

and the proof of the crystallographic restriction theorem, in

the same reference, there exists only one subspace of dimen-

sion 2 invariant by �. Such a plane is the plane perpendicular

to its rotation axis. So, let P be this plane.

Since P \ L 6¼ fð0; 0; 0Þg, let v be a non-zero element of

minimum length in P \ L and consider the lattice

L
0
¼ hv; �viZ. As � has order three the sublattice L0 is a

hexagonal plane lattice.

To finish the proof, consider y0 2 R; we prove that the y0-

projection of L into the plane P is a hexagonal plane lattice.

Let ð0; �Þ 2 �y

ð�Þ, where � is a threefold rotation. Then, by

theorem 1, one of the conditions holds:

(i) ð0; �þÞ 2 �;

(ii) ðð0; y
Þ; ��Þ 2 �;

(iii) ð0; y
Þ 2 L and either ðð0; y1Þ; �þÞ or ðð0; y1Þ; ��Þ is in

�.

Since the order of � is finite, we have that either ð0; �þÞ 2 �
or ð0; ��Þ 2 �. Then, the result follows by condition (ii) of

corollary 2.

If ð0; 0; 0Þ =2P \ L, note that the proof can be reduced to the

previous case by a translation. &

Remark 2. Theorem 3 shows that a possible way to obtain

patterns with hexagonal symmetry, by y0-projection, is to

project the functions f 2 XL in a plane invariant by the action

of some element � 2 HL with order three. After finding one of

those planes, in order to obtain projections as in definition 1,

we only need to change coordinates. The reader can see an

example with the b.c.c. lattice in Gomes (1999).

We are grateful to an anonymous referee who pointed out

that for certain specific widths of the projection this can be

obtained by other means. However, in these cases the

symmetry group of the projected functions, for most y0, has a

very small point group and this is not interesting for the study

of bifurcating patterns. More specifically, we are interested in

relating hexagonal patterns of different complexity in solu-

tions of the same differential equation with symmetry. As the

projection width y0 varies, one may obtain hexagonal patterns

with different symmetry groups, corresponding to different

patterns, as illustrated in the figures at the end of this article.

Bifurcation occurs via symmetry breaking and, hence, more

symmetry (a bigger point group) makes the bifurcation

problem more interesting.

As a consequence of theorem 3, we are able to list all the

Bravais lattices that may be projected to produce a two-

dimensional hexagonal pattern.

Theorem 4. The Bravais lattices that project to a hexagonal

plane lattice, under the conditions of theorem 3, are: (i)

primitive cubic lattice; (ii) body-centred cubic lattice; (iii)

face-centred cubic lattice; (iv) hexagonal lattice; and (v)

rhombohedral lattice. Moreover, up to a change of coordi-

nates, for the first three lattices the plane of projection must be

parallel to one of the planes in Table 1. For the hexagonal and

rhombohedral lattices the plane of projection must be parallel

to the plane X0Y.
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Proof. It is apparent from theorem 3 that we can exclude

the following Bravais lattices: triclinic, monoclinic, ortho-

rhombic and tetragonal, since the holohedries of these lattices

do not have elements of order three.

To see if the other Bravais lattices have hexagonal projected

symmetries, we need to examine the rotations of order three

and six in their holohedries and see if the plane perpendicular

to their rotation axes intersects the lattice.

The group of rotational symmetries of the cubic lattice (as

well as the body-centred cubic lattice and the face-centred

cubic lattice) is isomorphic to S4, the group of permutations of

four elements. So, in the holohedry of the cubic lattice we only

have rotations of order one, two or three. Consider a system of

generators for a representative for the cubic lattice L, in the

standard basis of R3, given by

ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ:

Then, the matrix representation of the rotations of order three

in HL is

�1 ¼

0 �1 0

0 0 1

�1 0 0

0
B@

1
CA; �2 ¼

0 1 0

0 0 �1

�1 0 0

0
B@

1
CA;

�3 ¼

0 0 1

�1 0 0

0 �1 0

0
B@

1
CA; �4 ¼

0 1 0

0 0 1

1 0 0

0
B@

1
CA:

Two-dimensional spaces perpendicular to the rotation axis of

each one of these rotations are given in Table 1.

This means that, for the first three lattices in the list, the

projection of functions f 2 XL into a plane have hexagonal

symmetries only if the plane is parallel to one of the plane

subspaces given in Table 1.

Consider now a three-dimensional hexagonal lattice. Its

group of rotational symmetries has order 12 and it has a

subgroup of order six consisting of the rotational symmetries

of the rhombohedral lattice.

Let the representatives for the hexagonal and rhombo-

hedral lattices be generated by

ð1; 0; 0Þ;
1

2
;

31=2

2
; 0

� �
; ð0; 0; cÞ c 6¼ 0; �1

and

ð1; 0; 1Þ; �
1

2
;

31=2

2
; 1

� �
; ð�

1

2
;�

ffiffiffi
3
p

2
; 1Þ;

respectively. Then, the 12 rotations in the holohedry of the

hexagonal lattice are generated by

�z ¼

1
2 � 31=2

2 0
31=2

2
1
2 0

0 0 1

0
@

1
A and �x ¼

1 0 0

0 �1 0

0 0 �1

0
@

1
A:

The generators of the group of rotational symmetries of the

rhombohedral lattice are then �2
z and �x.

We conclude that the only rotations of order six in the

holohedry of the hexagonal lattice are �z and �5
z, and of order

three �2
z and �4

z.

Therefore, the y0-projection of the hexagonal and rhom-

bohedral lattices is a hexagonal plane sublattice if and only if

the y0-projection is made into a plane parallel to the plane

X0Y . &

4. Hexagonal projected symmetries of the primitive
cubic lattice

We conclude the article with an example to illustrate the

hexagonal symmetries obtained by z0-projection of functions

with periods in the primitive cubic lattice, for all z0 2 R.

Consider a three-dimensional crystallographic group,

� ¼ L _þþHL, where L is the primitive cubic lattice generated

by the vectors ð1; 0; 0Þ; ð0; 1; 0Þ and ð0; 0; 1Þ over Z, and HL its

holohedry.

Without loss of generality, consider the projection of � on

P1 (see Table 1).

From theorem 3, the cubic lattice has a hexagonal plane

sublattice that intersects P1. This sublattice is generated by

ð0; 1; 1Þ; ð1; 0; 1Þ: ð5Þ

To make our calculations easier and to set up the hexagonal

symmetries in the standard way, consider the new basis

fð0; 1; 1Þ; ð1; 0; 1Þ; ð0; 0; 1Þg for the lattice L. Now multiply L

by the scalar 1=21=2 in order to normalize the vectors of (5).

With these changes the crystallographic group � has the new

translational subgroup generated by the vectors

v1 ¼ 0;
1

21=2
;

1

21=2

� �
; v2 ¼

1

21=2
; 0;

1

21=2

� �
; v3 ¼ 0; 0;

1

21=2

� �
:

Projection of � on P1, as in definition 1, can be done after a

change of coordinates that transforms P1 into X0Y. Consider

that change given by the orthonormal matrix:

A ¼

0 1
21=2

1
21=2

2
61=2

�1
61=2

1
61=2

1
31=2

1
31=2

�1
31=2

0
@

1
A:

Then, in the new system of coordinates X ¼ Ax, we obtain the

base for the primitive cubic lattice given by

l1 ¼ ð1; 0; 0Þ; l2 ¼
1

2
;

31=2

2
; 0

� �
; l3 ¼

1

2
;

31=2

6
;
�61=2

6

� �
: ð6Þ
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Table 1
Two-dimensional spaces perpendicular to the rotation axis of each one of
the rotations �i.

Here we denote by hvi; v 2 R3 the subspace generated by v.

Rotation Rotation axis Perpendicular plane

�1 hð1; 1;�1Þi P1 ¼ fðx; y; zÞ; z ¼ xþ yg
�2 hð1;�1;�1Þi P2 ¼ fðx; y; zÞ; z ¼ x� yg
�3 hð1;�1; 1Þi P3 ¼ fðx; y; zÞ; z ¼ �xþ yg
�4 hð1; 1; 1Þi P4 ¼ fðx; y; zÞ; z ¼ �ðxþ yÞg
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Figure 1
Projection of pattern u in a six-dimensional representation with primitive cubic lattice periodicity. Contour plots of the integral of u over different depths
z0. (a) z0 ¼ 1=½2ð61=2Þ�, (b) z0 ¼ 1=61=2, (c) z0 ¼ 2=61=2, (d) z0 ¼ 3=61=2. The same pictures occur for the projection of a strip of half this height of a pattern
in an eight-dimensional representation with face-centred cubic periodicity.

Table 2
Projection of � = L _þþHL for each z0 2 R.

z0 2 R �z0
�z0
¼ Lz0

_þþ Jz0

z0 ¼
3n

61=2
; n 2 Z\f0g �z0

¼b�� Lz0
¼

1

2
;

31=2

6

� �
;

1

2
;
�31=2

6

� �� �
Z

Then 0; 0;
3n

61=2

� �
2 L Jz0

¼ D6 ¼ h�
0; �0i

z0 ¼
3n� 1

61=2
; n 2 Z\f0g �z0

contains
1

2
;

31=2

6
;

3n� 1

61=2

� �
; �

� �
Lz0
¼ ð1; 0Þ;

1

2
;

31=2

2

� �� �
Z

Then
1

2
;

31=2

6
;

3n� 1

61=2

� �
2 L Jz0

¼
1

2
;

31=2

6

� �
; � 0

� �
�0

� �

z0 ¼
3nþ 1

61=2
; n 2 Z\f0g �z0

contains
1

2
;
�31=2

6
;

3nþ 1

61=2

� �
; �

� �
Lz0
¼ ð1; 0Þ;

1

2
;

31=2

2

� �� �
Z

Then
1

2
;
�31=2

6
;

3nþ 1

61=2

� �
2 L Jz0

¼
1

2
;
�31=2

6

� �
; � 0

� �
; �0

� �

For z0 different to the cases before �z0
¼ H Lz0

¼ ð1; 0Þ;
1

2
;

31=2

2

� �� �
Z

Jz0
¼ h�� 0; �0i



Observe that we changed the position of L as prescribed by

theorem 3.

We proceed to describe the symmetries of the space

�z0
ðX�Þ, for each z0 2 R. For this, we need to obtain the

subgroups b�� and �z0
of �. Denote by �z0

¼ Lz0
_þþ Jz0

the

subgroup of Eð2Þ of all symmetries of �z0
ðX�Þ.

It is straightforward to see that the elements of � with

orthogonal part �� are in the group

b�� ¼ fððv; zÞ; �Þ; ðv; zÞ 2 L; � 2bJJg
wherebJJ is the group generated by

� ¼

1
2 � 31=2

2 0
31=2

2
1
2 0

0 0 �1

0
@

1
A and � ¼

�1 0 0

0 1 0

0 0 1

0
@

1
A

and the group �z0
has a subgroup H ¼ L _þþ J, for all z0 2 R,

where L is the translation subgroup L ¼ hl1; l2iZ and J is the

subgroup generated by ðð0; 0; 0Þ; �Þ and ðð0; 0; 0Þ;��Þ. Using

statement (i) of theorem 1, for all z0 2 R all the functions

f 2 �z0
ðX�Þ are ð1; 0Þ, and ð12 ;

31=2

2 Þ periodic and invariant for

the action of

�0 ¼
�1 0

0 1

� �
and � � 0 ¼

� 1
2

31=2

2

� 31=2

2 � 1
2

� �
:

In Table 2 we list the group �z0
, for each z0 2 R, and describe

the respective projected symmetries.

We assume that all the functions f : R3
! R in XL admit a

unique formal Fourier expansion in terms of the waves

wkðx; y; zÞ ¼ expð2	ihk; ðx; y; zÞiÞ

where k is a wavevector in the dual lattice,

L


¼ fk 2 R3; hk; lii 2 Z; i ¼ 1; 2; 3g, of L given in (6), with

wavenumber jkj, where ðx; y; zÞ 2 R3 and h�; �i is the usual

inner product in R3. Thus,
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Figure 2
Projection of pattern u in a 12-dimensional representation with body-centred cubic lattice periodicity. Contour plots of the integral of u over different
depths z0. (a) z0 ¼ 1=½2ð61=2Þ�,. (b) z0 ¼ 1=61=2, (c) z0 ¼ 3=½2ð61=2Þ�, (d) z0 ¼ 2=61=2.



f ðx; y; zÞ ¼
P

k2L

zkwkðx; y; zÞ

where zk is the Fourier coefficient, for each k 2 L
, and with

the restriction z�k ¼ zk.

Therefore, we can write

XL ¼
L

k2L
0

Vk

for

L
0

¼ fk ¼ ðk1; k2Þ 2 L

; k1 > 0 or k1 ¼ 0 and k2 > 0g

and

Vk ¼ fReðawkðx; y; zÞÞ; a 2 Cg ffi C:

Note that X� is a subspace of XL.

We say that the space

M
jkj¼a

Vk ¼ Vk1
� Vk2

� � � � � Vks

is a 2s-dimensional representation of the action of � on the

space XL.

A straightforward calculation shows that the function

uðx; y; zÞ ¼
P
jkj¼21=2

expð2	ik � ðx; y; zÞÞ ð7Þ

is � invariant.

The contour plots of the projections of u are shown in Fig. 1,

with the symmetries given in Table 2. In Dionne (1993) it is

shown that the function u belongs to a six-dimensional

representation.

The body-centred cubic lattice shows a different config-

uration, illustrated in Fig. 2.

As an illustration, consider a system of generators:
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Figure 3
Projection of pattern u in a six-dimensional representation with rhombohedral lattice periodicity. Contour plots of the integral of u over different depths
z0 with parameter a = 2. (a) z0 ¼ 2=6, (b) z0 ¼ 2=3, (c) z0 ¼ 4=3, (d) z0 ¼ 2.



l1 ¼ ð1; 0; 0Þ; l2 ¼
1

2
;

31=2

2
; 0

� �
; l3 ¼ ð0; 0; cÞ c 6¼ 0;�1

and

r1 ¼ ð1; 0; 0Þ; r2 ¼
1

2
;

31=2

2
; 0

� �
; r3 ¼

�1

2
;

31=2

6
;

a

3

� �
; a 6¼ 0

for the hexagonal and rhombohedral lattices, respectively. A

construction similar to that used for the primitive cubic lattice

may be applied to these two cases, but here the parameters a

and c will change the pattern of the projected functions.

Examples are shown in Figs. 3 and 4.

Acknowledgements

CMUP (UID/MAT/00144/2013) is supported by the Portu-

guese government through the Fundação para a Ciência e a

Tecnologia (FCT) with national (MEC) and European struc-

tural funds through the programs FEDER, under the part-

nership agreement PT2020. JFO was supported by a grant

from the Conselho Nacional de Desenvolvimento Cientifico e

Tecnologico (CNPq) of Brazil.

References

Armstrong, M. A. (1988). Groups and Symmetry. New York: Springer
Verlag.

Bosch Vivancos, I., Chossat, P. & Melbourne, I. (1995). Arch. Rat.
Mech. Anal. 131, 199–224.

Busse, F. H. (1978). Rep. Prog. Phys. 41, 1929.
Callahan, T. K. & Knobloch, E. (1997). Nonlinearity, 10, 1179–1216.
Crawford, J. D., Gollub, J. P. & Lane, D. (1993). Nonlinearity, 6, 119.
Dionne, B. (1993). Z. Angew. Math. Phys. 44, 673–694.
Dionne, B. & Golubitsky, M. (1992). Z. Angew. Math. Phys. 43, 36–62.
Dionne, B., Silber, M. & Skeldon, A. C. (1997). Nonlinearity, 10, 321–

353.
Golubitsky, M. & Stewart, I. (2002). The Symmetry Perspective.

Berlin: Birkhauser Verlag.
Gomes, M. G. M. (1999). Phys. Rev. E, 60, 3741–3747.
Gunaratne, H. G., Ouyang, Q. & Swinney, H. L. (1994). Phys. Rev. E,

50, 2802–2806.
Hahn, T. (2005). International Tables for Crystallography, Vol. A, 5th

ed. Dordrecht: Kluwer.
Koca, N. O., Koca, M. & Koc, R. (2014). Acta Cryst. A70, 605–615.
Kopsky, V. & Litvin, D. B. (2002). International Tables for Crystal-

lography, Vol. E, 1st ed. Chichester: Wiley.
Miller, W. (1972). Symmetry Groups and their Applications. New

York: Academic Press.
Ouyang, Q. & Swinney, H. L. (1995). Chemical Waves and Patterns.

Onset and Beyond Turing Pattern Formation, edited by R. Kapral
& K. Showalter, pp. 269–295. Dordrecht: Kluwer.

Pinho, E. M. & Labouriau, I. S. (2014). J. Pure Appl. Algebra, 218, 37–
51.

Senechal, M. (1996). Quasicrystals and Geometry. Cambridge
University Press.

Turing, A. M. (1952). Philos. Trans. R. Soc. London. Ser. B, 237, 37–
72.

558 Juliane F. Oliveira et al. � Hexagonal projected symmetries Acta Cryst. (2015). A71, 549–558

research papers

Figure 4
Projection of pattern u in a 12-dimensional representation with
hexagonal lattice periodicity. Contour plots of the integral of u over
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